# Grade 11/12 Math Circles March 20 Primality Testing 

## Prime Numbers

## Definition

A prime number is an integer $p>1$ whose only positive divisors are 1 and $p$.

## Example

The primes less than 100 are given in this table.

| 2 | 3 | 5 | 7 | 11 |
| :---: | :---: | :---: | :---: | :---: |
| 13 | 17 | 19 | 23 | 29 |
| 31 | 37 | 41 | 43 | 47 |
| 53 | 59 | 61 | 67 | 71 |
| 73 | 79 | 83 | 89 | 97 |

Fundamental Theorem of Arithmetic
Every positive integer has a unique factorization into prime powers.

This theorem was apparently first stated fully by Gauss, though various weaker forms were stated and proved by Euclid, al-Farisi, Prestet, Euler, and Legendre.

## Example

- $12=2^{2} \times 3^{1}$
- $36=2^{2} \times 3^{2}$
- $210=2^{1} \times 3^{1} \times 5^{1} \times 7^{1}$
- $37=37^{1}$ (already prime)
- $1=($ empty product $)$


## Euclid's Theorem

There are infinitely many primes.

Proof: Suppose towards contradiction that there are only finitely many prime numbers, say $p_{1}, \ldots, p_{n}$. But then $q=p_{1} \times \cdots \times p_{n}+1$ is divisible by none of the $p_{i}$ 's. By the Fundamental Theorem of Arithmetic, $q$ has a prime factor $r$, but this $r$ did not appear in the original list of primes; contradiction.

Is there a systematic way to determine the prime factorization of a number, as opposed to guessing? The most conceptually simple algorithm is trial division by primes.

## Example

Let's calculate the prime factorization of 2093. 2093 is not divisible by 2 , 3 , or 5 , but $2093=$ $7 \times 299$. We continue by factoring 299. Notice that none of 2 , 3 , or 5 can divide 299 , so our list of trial divisors starts at 7 . 299 is not divisible by 7 or 11 , but $299=13 \times 23$. Since 23 is prime, we conclude that the prime factorization of 2093 is $7 \times 13 \times 23$.

Notice that there is no point in trial dividing by composites. Indeed, since 2093 was not divisible by either 2 or 3 , it cannot be divisible by 6 , for example.

## Example

By trial division, we find that $5687=11 \times 517$. We still need to check if 517 is divisible by 11 , and indeed $517=11 \times 47$ and the prime factorization of 5687 is $11^{2} \times 47$.

## Exercise

Determine whether 161 is prime, and if not, factor it.

## Exercise

Calculate the prime factorization of 1001 .

How many primes do we need to divide by before we can conclude that the integer we are testing is prime? The following proposition gives us a clue.

## Proposition

Suppose that a positive integer $n$ has a non-trivial divisor $a \geq \sqrt{n}$ (a divisor equal to neither 1 nor $n$ ). Then $n$ has a non-trivial divisor $b \leq \sqrt{n}$.

## Exercise

Prove the proposition above.

Now suppose that we are performing trial factoring on $n$ and have determined that for every prime $p \leq \sqrt{n}$, that $p \nmid n(p$ does not divide $n)$. Then this implies that $n$ is prime! Indeed, if $n$ has any non-trivial divisor $a$, then $n$ has a non-trivial divisor $b \leq \sqrt{n}$. If $a \leq \sqrt{n}$, we take $b=a$, and otherwise we use the previous proposition. In any case, $b$ has a prime factor $p$, which is also a prime factor of $n$, and $p \leq b \leq \sqrt{n}$. The moral of the story is that we need only trial divide by primes up to $\sqrt{n}$, which is a significant speedup over trial dividing by primes up to $n$.

## Exercise

Determine whether 1739 and 1741 are prime, and if not, factor them.

## Example

By trial division, we find that $4981=17 \times 293$. Since no prime $<17$ divides 4981 , no prime $<17$ divides 293. But 17 is the largest prime $\leq \sqrt{293}$, so 293 is prime and the prime factorization of 4981 is indeed $17 \times 293$.

## Exercise

Find the prime factorization of 344929 . (The calculation is not as bad as it seems).

## Example

The prime factorization of $10^{8}+1=100000001$ is $17 \times 5882353$.

In the previous example, we would need to know beforehand that 5882353 was prime, as it could not be deduced by simply trial factoring by the primes up to 17 . In general, trial factoring $n$ requires us to have the list of primes $\leq \sqrt{n}$. Is there an efficient way to calculate the list of prime numbers up to a given number $x$ ?

## Sieve of Eratosthenes

Write down the integers between 2 and $x$, then strike out every multiple of 2 except 2 itself. The next number not yet stricken is 3 ; strike out every multiple of 3 except 3 itself. Continue with 5 and so on, until the next unstricken number is $>\sqrt{x}$. The numbers in the list not stricken are the primes between 2 and $x$.

## Example

(At this point I do an example on the board. Rather than insert a large amount of text into this document, I refer the reader to https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes; there is a nice animation as of March 17, 2024).

## Natural Logarithm

Define the mathematical constant

$$
e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots=2.718 \ldots
$$

The natural logarithm $\ln (x)$ is the inverse function of the function $e^{x}$. That is, $e^{\ln (x)}=x$ for all $x>0$ and $\ln \left(e^{x}\right)=x$ for all real numbers $x$.

Two useful identities related to $\ln (x)$ are $\ln (x y)=\ln (x)+\ln (y)$ and $\ln \left(x^{y}\right)=y \ln (x)$.

## Prime Number Theorem

Let $\pi(x)$ be the number of primes which are $\leq x$. Then

$$
\pi(x) \sim \frac{x}{\ln (x)}
$$

If you are familiar with calculus, this means that

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{\left(\frac{x}{\ln (x)}\right)}=1
$$

Less rigorously, it means that $\pi(x)$ is approximately equal to $x / \ln (x)$ for real numbers $x$ and that the ratio between these functions gets closer to 1 as $x$ gets larger.
(What does $\pi=3.14 \ldots$ have to do with prime numbers? Rather confusingly, we are re-defining $\pi$ here. This is a standard notation for the "prime counting function", and is simply used because $\pi$ is the Greek equivalent of the letter " p ").

## Exercise

At the beginning of this talk, we listed the twenty-five primes which were $\leq 100$. How many primes does this approximate formula predict?

## Example

We list the values of $\pi(x)$ for several values of $x$ and the approximations via the Prime Number Theorem:

- $\pi\left(10^{3}\right)=168, \frac{10^{3}}{\ln \left(10^{3}\right)} \approx 145$
- $\pi\left(10^{4}\right)=1229, \frac{10^{4}}{\ln \left(10^{4}\right)} \approx 1086$
- $\pi\left(10^{5}\right)=9592, \frac{10^{5}}{\ln \left(10^{5}\right)} \approx 8686$
- $\pi\left(10^{6}\right)=78498, \frac{10^{6}}{\ln \left(10^{6}\right)} \approx 72382$
- $\pi\left(10^{7}\right)=664579, \frac{10^{7}}{\ln \left(10^{7}\right)} \approx 620421$

A question which a computer algorithm specialist would ask is "What is the time complexity of the Sieve of Eratosthenes?" Time complexity is a measure of the amount of time taken to complete an algorithm vs. the input. The input to the sieve algorithm is the value $x$, and to simplify things, we will assume that time is proportional to the number of strike-out operations we perform. In performing the algorithm, we strike out about $1 / 2$ of the numbers $\leq x$, then $1 / 3$, then $1 / 5$, and so on, till we strike out $1 / p$ for the largest prime $p$ which is $\leq \sqrt{x}$. Overall, we perform about

$$
(1 / 2+1 / 3+1 / 5+\cdots+1 / p) x=x \sum_{\substack{q \text { prime } \\ q \leq \sqrt{x}}} \frac{1}{q}
$$

strike-out operations (note that numbers with multiple prime factors get struck out more than once).

## Mertens' Theorem

Define

$$
S(x)=\sum_{\substack{p \text { prime } \\ p \leq x}} \frac{1}{p} .
$$

Then $S(x) \sim \ln (\ln (x))$.

The function $\ln (\ln (x))$ grows extremely slowly. For example, $\ln \left(\ln \left(10^{100}\right)\right)<6$. Nevertheless, $\ln (\ln (x))>y$ for $x>e^{e^{y}}$, so it grows without bound as $x$ grows.

Back to the sieve, Mertens' theorem implies that the sieve algorithm requires about

$$
x \ln (\ln (\sqrt{x}))=x \ln (\ln (x) / 2)=x(\ln (\ln (x))-\ln (2)) \sim x \ln (\ln (x))
$$

strike-out operations. Furthermore, if we are factoring $n$ and sieve the primes up to $\sqrt{n}$, we should expect about $\sqrt{n} \ln (\ln (\sqrt{n})) \sim \sqrt{n} \ln (\ln (n))$ strikeout operations.

## Exercise

Suggest an algorithm to sieve the primes between $x$ and $y$, where $x$ is not necessarily 0 , and estimate its time complexity.

Trial factoring will yield the prime factors of a number in increasing order. Fermat discovered a factorization method for numbers of the form $n=a b$, where $a$ and $b$ are close to each other.

## Proposition

Suppose there exist integers $c, d$ such that $n+c^{2}=d^{2}$. Then $n=d^{2}-c^{2}=(d-c)(d+c)$.

We can try factoring $n$ by iterating through several values of $c$, and testing whether $n+c^{2}$ is a perfect square. This method will quickly detect factorizations of the form $(d-c)(d+c)$ if $c$ is small (if the factors are close together).

## Exercise

Find a factor of 999991.

## Exercise

(Challenge) Find a factor of 2146681.

Next week, we will discuss modular arithmetic, and investigate more advanced primality tests such as Fermat's Little Theorem and the Miller-Rabin test.

